208 research outputs found

    Quantitative multi-objective verification for probabilistic systems

    Get PDF
    We present a verification framework for analysing multiple quantitative objectives of systems that exhibit both nondeterministic and stochastic behaviour. These systems are modelled as probabilistic automata, enriched with cost or reward structures that capture, for example, energy usage or performance metrics. Quantitative properties of these models are expressed in a specification language that incorporates probabilistic safety and liveness properties, expected total cost or reward, and supports multiple objectives of these types. We propose and implement an efficient verification framework for such properties and then present two distinct applications of it: firstly, controller synthesis subject to multiple quantitative objectives; and, secondly, quantitative compositional verification. The practical applicability of both approaches is illustrated with experimental results from several large case studies

    On finitely ambiguous B\"uchi automata

    Full text link
    Unambiguous B\"uchi automata, i.e. B\"uchi automata allowing only one accepting run per word, are a useful restriction of B\"uchi automata that is well-suited for probabilistic model-checking. In this paper we propose a more permissive variant, namely finitely ambiguous B\"uchi automata, a generalisation where each word has at most kk accepting runs, for some fixed kk. We adapt existing notions and results concerning finite and bounded ambiguity of finite automata to the setting of ω\omega-languages and present a translation from arbitrary nondeterministic B\"uchi automata with nn states to finitely ambiguous automata with at most 3n3^n states and at most nn accepting runs per word

    Tableaux for Policy Synthesis for MDPs with PCTL* Constraints

    Full text link
    Markov decision processes (MDPs) are the standard formalism for modelling sequential decision making in stochastic environments. Policy synthesis addresses the problem of how to control or limit the decisions an agent makes so that a given specification is met. In this paper we consider PCTL*, the probabilistic counterpart of CTL*, as the specification language. Because in general the policy synthesis problem for PCTL* is undecidable, we restrict to policies whose execution history memory is finitely bounded a priori. Surprisingly, no algorithm for policy synthesis for this natural and expressive framework has been developed so far. We close this gap and describe a tableau-based algorithm that, given an MDP and a PCTL* specification, derives in a non-deterministic way a system of (possibly nonlinear) equalities and inequalities. The solutions of this system, if any, describe the desired (stochastic) policies. Our main result in this paper is the correctness of our method, i.e., soundness, completeness and termination.Comment: This is a long version of a conference paper published at TABLEAUX 2017. It contains proofs of the main results and fixes a bug. See the footnote on page 1 for detail

    Reachability in Parametric Interval Markov Chains using Constraints

    Full text link
    Parametric Interval Markov Chains (pIMCs) are a specification formalism that extend Markov Chains (MCs) and Interval Markov Chains (IMCs) by taking into account imprecision in the transition probability values: transitions in pIMCs are labeled with parametric intervals of probabilities. In this work, we study the difference between pIMCs and other Markov Chain abstractions models and investigate the two usual semantics for IMCs: once-and-for-all and at-every-step. In particular, we prove that both semantics agree on the maximal/minimal reachability probabilities of a given IMC. We then investigate solutions to several parameter synthesis problems in the context of pIMCs -- consistency, qualitative reachability and quantitative reachability -- that rely on constraint encodings. Finally, we propose a prototype implementation of our constraint encodings with promising results

    From LTL and Limit-Deterministic B\"uchi Automata to Deterministic Parity Automata

    Full text link
    Controller synthesis for general linear temporal logic (LTL) objectives is a challenging task. The standard approach involves translating the LTL objective into a deterministic parity automaton (DPA) by means of the Safra-Piterman construction. One of the challenges is the size of the DPA, which often grows very fast in practice, and can reach double exponential size in the length of the LTL formula. In this paper we describe a single exponential translation from limit-deterministic B\"uchi automata (LDBA) to DPA, and show that it can be concatenated with a recent efficient translation from LTL to LDBA to yield a double exponential, \enquote{Safraless} LTL-to-DPA construction. We also report on an implementation, a comparison with the SPOT library, and performance on several sets of formulas, including instances from the 2016 SyntComp competition

    Computing Quantiles in Markov Reward Models

    Get PDF
    Probabilistic model checking mainly concentrates on techniques for reasoning about the probabilities of certain path properties or expected values of certain random variables. For the quantitative system analysis, however, there is also another type of interesting performance measure, namely quantiles. A typical quantile query takes as input a lower probability bound p and a reachability property. The task is then to compute the minimal reward bound r such that with probability at least p the target set will be reached before the accumulated reward exceeds r. Quantiles are well-known from mathematical statistics, but to the best of our knowledge they have not been addressed by the model checking community so far. In this paper, we study the complexity of quantile queries for until properties in discrete-time finite-state Markov decision processes with non-negative rewards on states. We show that qualitative quantile queries can be evaluated in polynomial time and present an exponential algorithm for the evaluation of quantitative quantile queries. For the special case of Markov chains, we show that quantitative quantile queries can be evaluated in time polynomial in the size of the chain and the maximum reward.Comment: 17 pages, 1 figure; typo in example correcte

    Decision Problems for Nash Equilibria in Stochastic Games

    Get PDF
    We analyse the computational complexity of finding Nash equilibria in stochastic multiplayer games with ω\omega-regular objectives. While the existence of an equilibrium whose payoff falls into a certain interval may be undecidable, we single out several decidable restrictions of the problem. First, restricting the search space to stationary, or pure stationary, equilibria results in problems that are typically contained in PSPACE and NP, respectively. Second, we show that the existence of an equilibrium with a binary payoff (i.e. an equilibrium where each player either wins or loses with probability 1) is decidable. We also establish that the existence of a Nash equilibrium with a certain binary payoff entails the existence of an equilibrium with the same payoff in pure, finite-state strategies.Comment: 22 pages, revised versio

    Modular Verification for a Class of PLTL Properties

    No full text
    The verification of dynamic properties of a reactive systems by model-checking leads to a potential combinatorial explosion of the state space that has to be checked. In order to deal with this problem, we define a strategy based on local verifications rather than on a global verification. The idea is to split the system into subsystems called modules, and to verify the properties on each module in separation. We prove for a class of PLTL properties that if a property is satisfied on each module, then it is globally satisfied. We call such properties modular properties. We propose a modular decomposition based on the B refinement process. We present in this paper an usual class of dynamic properties in the shape of G (p -> Q), where `p' is a proposition and `Q' is a simple temporal formula, such as `X q', `F q', or `q U r' (with `q' and `r' being propositions). We prove that these dynamic properties are modular. For these specific patterns, we have exhibited some syntactic conditions of modularity on their corresponding Buchi automata. These conditions define a larger class which contains other patterns such as `G (p -> X (q U r))'. Finally, we show through the example of an industrial Robot that this method is valid in a practical way

    Parametric LTL on Markov Chains

    Full text link
    This paper is concerned with the verification of finite Markov chains against parametrized LTL (pLTL) formulas. In pLTL, the until-modality is equipped with a bound that contains variables; e.g., ◊≀x φ\Diamond_{\le x}\ \varphi asserts that φ\varphi holds within xx time steps, where xx is a variable on natural numbers. The central problem studied in this paper is to determine the set of parameter valuations Vâ‰șp(φ)V_{\prec p} (\varphi) for which the probability to satisfy pLTL-formula φ\varphi in a Markov chain meets a given threshold â‰șp\prec p, where â‰ș\prec is a comparison on reals and pp a probability. As for pLTL determining the emptiness of V>0(φ)V_{> 0}(\varphi) is undecidable, we consider several logic fragments. We consider parametric reachability properties, a sub-logic of pLTL restricted to next and ◊≀x\Diamond_{\le x}, parametric B\"uchi properties and finally, a maximal subclass of pLTL for which emptiness of V>0(φ)V_{> 0}(\varphi) is decidable.Comment: TCS Track B 201
    • 

    corecore